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A new, selective method for the synthesis of (E)-vinyl
sulfones is presence by palladium-catalyzed C-S bond
cleavage/conjugate addition. In the presence of Pd-
(OAc)2 andDMEDA(N1,N2-dimethylethane-1,2-diamine),
1,2-bis(phenylsulfonyl)ethane underwent the C-S bond
cleavage, followed by conjugate addition to numerous
electron-deficient alkynes afforded the corresponding
(E)-vinyl sulfones in moderate to good yields.

Vinyl sulfones are unique architectures found in several
biologically active compounds1 as well as usefully syn-
thetic intermediates in organic synthesis.2 For example,
R,β-unsaturated sulfoneswere reported as inhibitors of inducible
VACM-1 expression.3 Therefore, considerable effort has
been devoted to the development of new and efficient
methods for the synthesis of vinylsulfones. The traditionally
available methodologies for vinyl sulfones mainly include

the following: (1) the Knoevenagel condensations of aro-
matic aldehydes with sulfonylacetic acids,4 (2) Horner-
Emmons reactions of carbonyl compounds and sulfonyl
phosphones,5 (3) β-elimination of selenosulfones or halo-
sulfones,6 and (4) oxidation of the corresponding vinyl
sulfides.7 However, these methods are restricted to relatively
harsh reaction conditions, and inaccessible substrates were
necessary. Recently, a new and efficient route to these com-
pounds is the cross-coupling of sulfinate salts with vinyl
bromides, vinyl triflates, alkenyl boronic acids, or alkenes
with Pd or Cu catalysts (Scheme 1).8 Reeves and co-workers,
for instance, have described a valuable protocol for the
synthesis of vinyl sulfones in moderate to good yields by
palladium-catalyzed coupling of vinyl tosylates with arylsul-
finate salts.8h Here, we report a new approach to (E)-vinyl
sulfones via palladium-catalyzed conjugate additions of
alkynes with 1,2-bis(phenylsulfonyl)ethane (Scheme 1).9 To
the best of our knowledge, it is the first example of using the
commercially available 1,2-bis(phenylsulfonyl)ethane as the
sulfone resource to prepare vinyl sulfones by generating
phenylsulfonyl intermediates in situ for the conjugate addi-
tion to the electron-deficient alkynes.

The reaction between N-benzyl-N,3-diphenylpropiola-
mide (1a) and 1,2-bis(phenylsulfonyl)ethane (2) was investi-
gated to explore theoptimal reaction conditions, and the results
are summarized in Table 1. Initially, a number of solvents, such
as dioxane, MeCN, DMF, and DMF/MeCN, were examined
in the presence of Pd(OAc)2, DMEDA (L1), and KOtBu

SCHEME 1. Transition Metal-Catalyzed Synthesis of Vinyl
Sulfones
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(entries 1-6). The results demonstrated that the effect of
solvents played an important role in the reaction.While a trace
amount of the target product 3 was observed in dioxane
(entry 1), MeCN enhanced the yield of 3 to 21% yield and
DMFgave 62%yield (entries 2 and 3). It was a pleasure to find
that a mixture of DMF/MeCN (v/v = 1:1) afforded the best
results (73% yield, entry 4). The configuration structure of
(E)-3 was unambiguously assigned by the X-ray single-crystal
diffraction analysis.10 Subsequently, three other bases, includ-
ing KHCO3, NaOAc, and LiN(TMS)2, were evaluated, and
they were less effective than KOtBu (entries 4 and 7-9). The
effect of the catalytic systems was also tested (entries 4 and
10-16). The reaction could not take place without Pd catalysts
(entry 10). It was disclosed that 21% yield of 3was isolated by
usingPd(OAc)2 alone (entry11), andPd(PPh3)4 combinedwith
L1 gave the identical results to those of the Pd(OAc)2/L1
system (entry 13). However, the PdCl2/L1, Pd2(dba)3/L1, Pd-
(OAc)2/L2, and Pd(OAc)2/L3 systems displayed less activity
(entries 12 and 14-16). Among the reaction temperature
examined, it turned out that 120 �C was the most suitable for

the reaction (entries 4, 17, and 18). It is noted that the loadingof
Pd(OAc)2 affected the reaction, and the yield was decreased
to 58% at 5 mol % of Pd(OAc)2 (entry 19).

With the optimal conditions in hand, the alkynes scope
was explored (Table 2). The results demonstrated that the
reaction could be applied to a wide variety of 3-arylpropio-
lamides, and several N-substituents, either alkyl or aryl
groups, were perfectly tolerated under the standard condi-
tions (entries 1-12). N-Methyl-N,3-diphenylpropiolamide
(1b), for instance, underwent the reaction with 1,2-bis-
(phenylsulfonyl)ethane (2), Pd(OAc)2, L1, and KOtBu to
afford the target product 4 in 65% yield (entry 1). Substrates
1c-h, bearing methyl, methoxy, or fluoro groups on the
N-arylmoiety, were also suitable for the reaction inmoderate
to good yields (entries 2-7). To our delight, the optimized
conditions were compatible with both N,N-diethyl-3-phe-
nylpropiolamide (1i) and 1-morpholino-3-phenylprop-2-yn-
1-one (1j), providing two regioselective isomers in 71% and
79% yields, respectively (entries 8 and 9).10 Subsequently,
substituents at the terminal alkyne of N-methyl-N-arylpro-
piolamides were investigated (entries 10-12). Treatment
of substrate 1k, bearing a 2-methylpheneyl group, with
1,2-bis(phenylsulfonyl)ethane (2), Pd(OAc)2, L1, and KOtBu
afforded the corresponding (E)-13 in 60% yield (entry 10).
However, amide 1l with a 4-acetylphenyl group reduced the
yield of (E)-14 to 43% under the same conditions (entry 11).
Gratifyingly, N-methyl-N-phenyl-3-(thiophen-2-yl)propiol-
amide (1m) was still a suitable substrate in 74% yield (entry
12). We found that the optimized conditions were consis-
tent with alkylpropiolamides 1n and 1o in moderate yields
(entries 13 and 14). Notably, 43% yield was still achieved
from another substrate 1p, methyl 3-phenylpropiolate,
under the standard conditions (entry 15). However, the
reactions of 1,3-diphenylprop-2-yn-1-one (1q) or N,3-di-
phenylpropiolamide (1r) were not successful under the
standard conditions with a mixture of products (entries 16
and 17).

To understand the mechanism, two controlled experiments
were carried out using the reported sulfone reagent, PhSO2K
(Scheme 2). No target products 3 were observed by GC-MS
analysis from the reaction between substrate 1a and PhSO2K
under either the reported conditions8 or the present condi-
tions. Notably, the reaction could not take place even in the
presence of t-BuOH under the present reaction conditions.

Therefore, a possible mechanism was proposed as out-
lined in Scheme 3 on the basis of the reported mechanism8

and the present results. Insertion of Pd(0) into 1,2-bis-
(phenylsulfonyl)ethane (2) affords intermediate A, fol-
lowed by complexation with an alkyne gives intermediate
B. Two regioselective additions of intermediate B take
place to yield intermediates C and/or C0 on the basis of

TABLE 1. Screening Optimal Conditionsa

entry [Pd]/ligand base solvent yield (%)

1 Pd(OAc)2/L1 KOtBu dioxane trace
2 Pd(OAc)2/L1 KOtBu MeCN 21
3 Pd(OAc)2/L1 KOtBu DMF 62
4 Pd(OAc)2/L1 KOtBu DMF/MeCN (1:1) 73
5 Pd(OAc)2/L1 KOtBu DMF/MeCN (1:4) 46
6 Pd(OAc)2/L1 KOtBu DMF/MeCN (4:1) 37
7 Pd(OAc)2/L1 KHCO3 DMF/MeCN (1:1) 40
8 Pd(OAc)2/L1 NaOAc DMF/MeCN (1:1) 44
9 Pd(OAc)2/L1 LiN(TMS)2 DMF/MeCN (1:1) 28
10 KOtBu DMF/MeCN (1:1) 0
11 Pd(OAc)2 KOtBu DMF/MeCN (1:1) 21
12 PdCl2/L1 KOtBu DMF/MeCN (1:1) 32
13 Pd(PPh3)4/L1 KOtBu DMF/MeCN (1:1) 70
14 Pd2(dba)3/L1 KOtBu DMF/MeCN (1:1) 40
15 Pd(OAc)2/L2 KOtBu DMF/MeCN (1:1) 27
16 Pd(OAc)2/L3 KOtBu DMF/MeCN (1:1) 25
17b Pd(OAc)2/L1 KOtBu DMF/MeCN (1:1) 66
18c Pd(OAc)2/L1 KOtBu DMF/MeCN (1:1) 32
19d Pd(OAc)2/L1 KOtBu DMF/MeCN (1:1) 58
aReaction conditions: 1a (0.2 mmol), 2 (2 equiv), [Pd] (10 mol %),

ligand (20 mol%), base (2 equiv), and solvent (2 mL) at 120 �C for 24 h.
bAt 100 �C. cAt 80 �C. dPd(OAc)2 (5 mol %).

SCHEME 2. Controlled Experiments in the Presence of

PhSO2K
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the N-substituents. Finally, reductive elimination/proton-
ation of intermediates C affords the target (E)-product,
1-(vinylsulfonyl)benzene, and the active Pd(0) species with

the aid of t-BuOK. It is noteworthy that the generation of

1-(vinylsulfonyl)benzene is obtained and in situ deter-

mined by GC-MS analysis.
We deduce that both the steric hindrance and electronic

effect of the N-substituents may affect the regioselective
addition to intermediate B leading to intermediates C and
C0. Substrates with an N,N-dialkyl group give a mixture of
two regioselective products due to their less steric hindrance

and electron-donating effect, which results in two regiose-
lective products.

In summary, we described a novel, simple protocol for the
synthesis (E)-vinyl sulfones by palladium-catalyzed conju-
gate addition reaction. This method allows a variety of
electron-deficient alkynes reacted with 1,2-bis(phenylsulfo-
nyl)ethane, Pd(OAc)2, and DMEDA leading to the corre-
sponding (E)-vinyl sulfones in moderate to good yields. It is
noteworthy that the sulfone resource, phenylsulfonyl inter-
mediates, is prepared in situ from 1,2-bis(phenylsulfonyl)-
ethane through a C-S bond cleavage.

TABLE 2. Palladium-Catalyzed Conjugate Addition of Alkynes (1) with 1,2-Bis(phenylsulfonyl)ethane (2)a

aReaction conditions: 1 (0.2mmol), 2 (2 equiv), Pd(OAc)2 (10mol%),DMEDA(20mol%),KOtBu (2 equiv), andDMF/MeCN (v/v=1: 1; 2mL) at
120 �C for 24 h. bIsolated yield. cA mixture of (E)-N,N-diethyl-3-phenyl-3-(phenylsulfonyl)acrylamide (E-11) and (Z)-N,N-diethyl-3-phenyl-
2-(phenylsulfonyl)acrylamide (Z-110) was obtained, and the ratio of Z/E is 1:2. dE-12/Z-120 = 1:1. e18 h.
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Experimental Section

Typical Experimental Procedure for Palladium-Catalyzed Con-

jugateAddition ofAlkynes (1)with 1,2-Bis(phenylsulfonyl)ethane (2).
Amixture of alkynes 1 (0.2 mmol), 1,2-bis(phenylsulfonyl)ethane 2
(124 mg, 2 equiv), Pd(OAc)2 (4.5 mg, 10 mol %), N,N-dimethy-
lethane-1,2-diamine (L1, 3.5 mg, 20 mol%), and KOtBu (44.8 mg,
2 equiv) was stirred inDMF/MeCN(v/v=1:1, 2mL) at 120 �C for
24 h until complete consumption of starting material as monitored
by TLC and GC-MS analysis. Then the mixture was diluted with
diethyl ether and washed with saturated NaCl. The organic layers
were dried with anhydrousNa2SO4 and evaporated under vacuum;
the residue was purified by flash column chromatography (hexane/
ethyl acetate) to afford the pure product.

(E)-N-Benzyl-N,3-diphenyl(phenylsulfonyl)acrylamide (3):
73% yield (66.1 mg); colorless oil; 1H NMR (500 MHz) δ
7.50 (d, J= 7.5 Hz, 1H), 7.38-7.29 (m, 10H), 7.24 (t, J= 7.5
Hz, 1H), 7.19-7.13 (m, 3H), 6.98 (t, J= 7.5 Hz, 2H), 6.90 (d,
J = 7.0 Hz, 2H), 6.74 (t, J = 7.5 Hz, 2H), 4.76 (s, 2H); 13C
NMR (125 MHz) δ 164.2, 146.4, 140.5, 137.9, 136.5, 133.5,
132.5, 130.1, 129.5, 129.4, 129.1, 129.0, 128.8 (2C), 128.6,
128.5, 128.4, 128.0 (2C), 127.8, 127.4, 127.3, 52.5; IR (KBr,
cm-1) 1653, 1647; LRMS (EI, 70 eV)m/z (%) 453 (Mþ, 1), 211
(100), 123 (61); HRMS (EI) for C28H23NO3S (Mþ) calcd
453.1399, found 453.1397.

(E)-Methyl 3-phenyl-3-(phenylsulfonyl)acrylate (18): 43%
yield (26 mg); colorless oil; 1H NMR (500 MHz, CDCl3) δ
7.57 (t, J = 1.5 Hz, 3H), 7.56-7.39 (m, 2H), 7.35-7.33 (m,
1H), 7.21-7.02 (m, 3H), 7.01 (d, J=1.5 Hz, 2H), 3.60 (s, 3H);
13C NMR (125 MHz, CDCl3) δ 164.1, 154.9, 137.5, 133.7,
129.8, 129.6, 129.4, 129.0, 128.8, 127.8, 126.6, 51.9; IR (KBr,
cm-1) 1738, 1654; LRMS (EI, 70 eV)m/z (%) 302 (Mþ, 1), 160
(100); HRMS (EI) for C16H14O4S (Mþ) calcd 302.0613, found
302.0610.

Vinylsulfonylbenzene:11 colorless oil; 1H NMR (500 MHz,
CDCl3) δ 7.91 (t, J= 8.0 Hz, 2H), 7.65-7.61 (m, 1H), 7.56 (t,
J=7.5 Hz, 2H), 6.69-6.64 (m, 1H), 6.68 (d, J=7.5 Hz, 1H),
6.47 (d, J=16.5 Hz, 1H), 6.05 (d, J=9.5 Hz, 1H); 13C NMR
(125 MHz, CDCl3) δ 142.5, 138.4, 133.6, 129.3, 129.1, 127.9;
LRMS (EI 70 eV) m/z (%) 168 (Mþ, 21), 125 (100).
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